博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
进程池
阅读量:5317 次
发布时间:2019-06-14

本文共 5032 字,大约阅读时间需要 16 分钟。

转自:https://www.cnblogs.com/kaituorensheng/p/4465768.html

 

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

 

例1:使用进程池

#coding: utf-8import multiprocessingimport time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print "Sub-process(es) done."

一次执行结果

1
2
3
4
5
6
7
8
9
10
mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello
0
 
msg: hello
1
msg: hello
2
end
msg: hello
3
end
end
end
Sub-process(es) done.

函数解释

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例2:使用进程池(阻塞)

#coding: utf-8import multiprocessingimport time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print "Sub-process(es) done."

一次执行的结果

1
2
3
4
5
6
7
8
9
10
msg: hello
0
end
msg: hello
1
end
msg: hello
2
end
msg: hello
3
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done. 

例3:使用进程池,并关注结果

import multiprocessingimport timedef func(msg): print "msg:", msg time.sleep(3) print "end" return "done" + msg if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in xrange(3): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print ":::", res.get() print "Sub-process(es) done."

一次执行结果

1
2
3
4
5
6
7
8
9
10
msg: hello
0
msg: hello
1
msg: hello
2
end
end
end
::: donehello
0
::: donehello
1
::: donehello
2
Sub-process(es) done.

 :get()函数得出每个返回结果的值

例4:使用多个进程池

#coding: utf-8import multiprocessingimport os, time, random def Lee(): print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID start = time.time() time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数 end = time.time() print 'Task Lee, runs %0.2f seconds.' %(end - start) def Marlon(): print "\nRun task Marlon-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 40) end=time.time() print 'Task Marlon runs %0.2f seconds.' %(end - start) def Allen(): print "\nRun task Allen-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 30) end = time.time() print 'Task Allen runs %0.2f seconds.' %(end - start) def Frank(): print "\nRun task Frank-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 20) end = time.time() print 'Task Frank runs %0.2f seconds.' %(end - start) if __name__=='__main__': function_list= [Lee, Marlon, Allen, Frank] print "parent process %s" %(os.getpid()) pool=multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print 'Waiting for all subprocesses done...' pool.close() pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束 print 'All subprocesses done.'

一次执行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
parent process
7704
 
Waiting for
all
subprocesses done...
Run task Lee
-6948
 
Run task Marlon
-2896
 
Run task Allen
-7304
 
Run task Frank
-3052
Task Lee, runs
1.59
seconds.
Task Marlon runs
8.48
seconds.
Task Frank runs
15.68
seconds.
Task Allen runs
18.08
seconds.
All subprocesses done.

 

#coding: utf-8import multiprocessing def m1(x): print x * x if __name__ == '__main__': pool = multiprocessing.Pool(multiprocessing.cpu_count()) i_list = range(8) pool.map(m1, i_list)

一次执行结果

1
2
3
4
5
6
7
8
0
1
4
9
16
25
36
49

 参考:http://www.dotblogs.com.tw/rickyteng/archive/2012/02/20/69635.aspx 

 

问题:http://bbs.chinaunix.net/thread-4111379-1-1.html

#coding: utf-8import multiprocessingimport logging def create_logger(i): print i class CreateLogger(object): def __init__(self, func): self.func = func if __name__ == '__main__': ilist = range(10) cl = CreateLogger(create_logger) pool = multiprocessing.Pool(multiprocessing.cpu_count()) pool.map(cl.func, ilist) print "hello------------>"

一次执行结果

1
2
3
4
5
6
7
8
9
10
11
0
1
2
3
4
5
6
7
8
9
hello------------>

转载于:https://www.cnblogs.com/fengff/p/8257717.html

你可能感兴趣的文章
课程作业04-字串加密解密
查看>>
用ATL创建COM组件详细解说
查看>>
计数排序
查看>>
关于jmeter读取CSV文件的详细设置
查看>>
Hadoop Eclipse Plugin相关
查看>>
我在赶集网的两个月(完整版)
查看>>
axis2 jar包详解及缺少jar包异常分析
查看>>
Hadoop Hive概念学习系列之hive里的用户定义函数UDF(十七)
查看>>
Spark的数据存储(十九)
查看>>
pageX和pageY
查看>>
JQ初级
查看>>
python学习之路
查看>>
继承类构造方法使用
查看>>
【安卓】imageView.scaleType取centerCrop后,再用padding时显示异常?
查看>>
怎样改变Richedit中某一行的字体或某一行的颜色
查看>>
R-Logistic回归
查看>>
XmlNode中Value和InnerText的区别
查看>>
MVC Webdiyer分页插件 实例
查看>>
SSL和SSH和OpenSSH,OpenSSL有什么区别
查看>>
JavaWeb 学习001-登录页面
查看>>